Trout in the Trym

Group 6

Trout in the Trym (NGO)

- A grassroots, volunteer led community group.
- Aim to 'restore trout to the Trym' by cleaning up the area from pollution.

Background information

- The river Trym flows south into the River Avon, with a tributary known as the River Hazel Brook
- Wessex Water manages multiple Combined Storm Overflows (CSOs) along the course of the Trym

Why is it important?

Visible litter

- Investigating the microplastic pollution in the area between the Trym River and the Hazel Brook
- Hazel Brook water originates in Cribbs Causeway from a pond with waste
- Environmental consequences on wildlife and human exposure
- Investigating multiple locations to find the source
- Consistent monitoring to monitor interventions and progress

Hypotheses and research questions

Aim of research: To explore the microplastics concentration and the possible causes of this along the River Trym.

Do CSOs have an impact on the microplastics in the river?

Hypothesis 1: There will be more microplastics found downstream than upstream of a CSO.

Does the car park (and roads) impact microplastics in the river?

Hypothesis 2: There will be more microplastics found downstream of the car park than upstream.

How does discharge impact microplastic concentration along the river? Hypothesis 3: Sites with a higher discharge will have a higher concentration of microplastics.

How does the water chemistry vary between the sites?

Hypothesis 4: Sites downstream from CSO will have higher EC, and lower DO, and sites with more microplastics will have a lower pH.

Field sites

- Site 1: downstream, approaching mouth to the Avon
 - Site 2: downstream of car park
 - Site 3: upstream of car park
 - Site 4: Hazelbrook tributary
 - Site 5: downstream of CSO on the other tributary
 - Site 6: upstream of CSO on the other tributary

upstream

Sampling strategy

- Purposive sampling technique
- Worked our way upstream
- Water samples not sediment samples
- Samples and probe readings collected from the center, upstream of discharge
- Flowmeter for velocity

Sampling procedure

- Microplastic contamination samples

 Standardised depths
 8 repetitions
- 2. Probe measurements o 3 repetitions
- 3. Flow velocity -> discharge
 - \odot Segmented channel width
 - \circ Flow metre
 - \circ Q = AV

Lab work

Selective fluorescence staining method using Nile Red

Procedure:

- 1. Plastic-free laboratory water
- 2. Ultrasonic Sonicator bath

Glass & ceramic , pressure filter unit

Ultrasonic sonicator bath

- 3. Adding the NR4. Mixing and filtering
- 5. Photographing using Crime-lite

Lens wipes

Nile Red dye

Analytical balance

Rotating mixer

Crime-lite Filter paper with sample

Camera on stand

Analysis

- Microplastic count
- Water chemistry analysis
- Microplastic per gram comparisons
- Dischargevsmicroplastics
- Analysis implications

Microplastic count

- Strong downstream trend
- Inflated values of sites downstream of pollution source
- Error bars show higher variance at sites with higher microplastic count
- Most sights have some microplastic free recordings

Water chemistry analysis

- Visual representations and statistical tests show no correlation in EC and microplastics
- Very weak negative correlation between DO and microplastic with 20% of variance being explained by DO
- Slight correlation with high microplastics at low pH which will be explored further

Water chemistry analysis

- Few PH anomalies
- No statistical similarity between pH mean and microplastic mean.
- Weak negative correlation between pH and microplastic at 29.5%

Discharge vs microplastics

- Linear regression models shows 73.5% of microplastics per gram variance is influenced by discharge.
- T test shows there is no significant difference between the means of the two variables (p value = 0.0112).

lm(formula = microplastics_per_gram ~ discharge, data = main_dataset)

Residuals:

1	2	3 4	5	6
0.9584	7.8916 -11.214	2 0.4399	3.0746	-1.1503

Coefficients:

	Estimate	Std. Error	t	value	Pr(> t)	
(Intercept)	6.646	4.903		1.355	0.2468	
discharge	2115.441	548.396		3.858	0.0182	Ŵ

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.07 on 4 degrees of freedom. Multiple R-squared: 0.7881, Adjusted R-squared: 0.7 F-statistic: 14.88 on 1 and 4 DF, p-value: 0.01819

Microplastic per gram site comparisons

- Tukey test shows very little correlation
- Site 1 and site 6 correspond the least which has the biggest distance between them
- This confirms downstream trend
- T test between site 2 and 3 shows means are significantly different showing car park effect (p value = 0.327)

Tukey multiple comparisons of means 95% family-wise confidence level Fit: aov(formula = Values ~ Site, data = your_data_long) \$Site diff lwr upr p adi Site2-Site1 -11.725 -57.1196 33.6696 0.9709118 Site3-Site1 -31.825 -77.2196 13.5696 0.3105702 Site4-Site1 -27.850 -73.2446 17.5446 0.4574140 Site5-Site1 -29.975 -75.3696 15.4196 0.3754570 Site6-Site1 -34.750 -80.1446 10.6446 Site3-Site2 -20.100-65.4946 25.2946 0.7714243 Site4-Site2 -16.125 -61.5196 29.2696 0.8940644 Site5-Site2 -18.250 -63.6446 27.1446 0.8342756 Site6-Site2 -23.025 -68.4196 22.3696 0.6572992 Site4-Site3 3,975 -41,4196,49,3696,0,9998214 Site5-Site3 1.850 -43.5446 47.2446 0.9999960 Site6-Site3 -2.925-48.319642,4696 0,9999607 -2.125Site5-Site4 -47.519643.26960.9999920Site6-Site4 -6.900 -52.2946 38.4946 0.9974121 Site6-Site5 -4.775 -50.1696 40.6196 0.9995614

Secondary Data Collection - Microplastics

We gathered a variety of secondary data, all of which included studies identifying microplastics as plastic particles measuring under 5000µm (GESAMP, 2015).

We also tried to find studies which used water samples instead of sediment as the microplastic sampling method.

Figure Label	Reference	Size of mesh filter used	Concentration in MP/g	Landscape	Comments on Study
А	Blair et al., 2019	11 µm	0.141-0.432 MP/g	Freshwater urban river	Research of an urban river, River Klein, Glasgow
В	Tibbetts, et.al 2018	63-250 µm	0.092 MP/G	Urbanised catchment area	High concentration reflects urbanized, populated catchment area
С	Dikareva & Simon, 2019	63-500 µm	0.303MP/g	Small streams, New Zealand	Urbanization gradient study across a catchment
D	Group 6 Avon Project, 2023	0.22 µm	10.44MP	Ashton Brooke small stream, Bristol	Average of 2 points in a small stream, flowing in and out a reservoir
E	Horton <i>et al</i> ., 2016	1.2 µm	1.41 MP/g	Urban freshwater lake	Urban Freshwater lake in the UK
F	Harley-Nyang et al., 2022	1.2 µm	37.7-286.5 MP/g	Inflow at wastewater treatment works	Field and laboratory study using density separation and infrared spectroscopy
G	Trout on the Trym	1.2µm	21.9 MP/G	River Trym	Urban River

Secondary Data Collection - EC

Here we compared the values of EC in different types of water.

RSGAL – Rivers supporting good aquatic life (SWT, n.d)

All other values are taken from (Atlas Scientific, 2022)

Water Type	Conductance Range (µS/cm)
Distilled Water	0.5.2
	0.0-0
Tap Water	50-800
Freshwater Streams	100-2,000
Rivers supporting good Aquatic life	150-500
Industrial Wastewater	10,000
River Trym	816-929

Discussions

Analysis implications

- Small negative correlation between pH and microplastics.
- No correlation between DO and EC with microplastics.
- Strong downstream trend shows added pollution from CSO's and car park.
- Large increase in microplastics upstream and downstream from car park.
- Strong positive statistically significant correlation between discharge and microplastic per gram.

Discussions

Limitations in the lab

- Contamination (lab coats, plastic equipment, airborne/dust)
 Nile red (NR):
 - Potential for biogenic staining (algae, lignin)
 - Favours the detection of hydrophobic samples

Limitations in the field

- Sudden, unexpected change in river discharge
- Hand-held flow metre

Limitations in the analysis

• Counting microplastics manually lead to a large uncertainty in results, had to change method

Discussions

Suggestions for future work

- Using specialised equipment e.g. FTIR identify polymer types find sources
- Impacts of the microplastics for wildlife and environment
- Investigate the impact of CSOs on microplastic concentration before and after storm overflow events
- Further investigate the link between DO and Microplastics

Conclusions

Hypothesis 1: There will be more microplastics downstream than upstream of a CSO.

✓ Accept – significant increase in microplastics directly downstream from CSO (site 5) compared to upstream (site 6)

Hypothesis 2: There will be more microplastics found downstream of the car park than upstream.

✓ Accept – significant increase in microplastics downstream from the car park (site 2) compared to upstream (site 3)

Hypothesis 3: Sites with a higher discharge will have a higher concentration of microplastics. ✓ *Accept – statistically significant increase in microplastics in sites with higher discharge*

Hypothesis 4: Sites downstream from CSO will have higher EC, and lower DO, and sites with more microplastics will have a lower pH.

No correlation found between EC and microplastics, and inconclusive results regarding DO being in lower concentration downstream of CSOs, and a slight negative correlation between microplastics and pH

Fieldwork lead: Perry Oakes

Editor: Natalie Mycka

Questions?

Analytical lead: Jennifer Duffield

Project manager: Aikaterini Kanari

Quality assurance: Xavier Faden da Silva Altern

Contextual editor: Rohan Luthra

